

The prospects for LNG in the Danube Region

Dr. Péter Kaderják, Director

Danube Region Stakeholder Seminar Brussels, May 26, 2016

This project is co-financed by the European Union.

- LNG oversupply would bring price relief to Europe, however, the DR will experience limited benefits. The price difference between Europe and the Danube Region will grow as more LNG supplies reach Europe
- By 2020, we find IGB, IGB+TAP and the Croatian LNG alone or with HR-HU interconnector (at low tariffs) to be projects with a positive social NPV
- The Nord Stream expansion would bring a substantial price increase to the DR. If Nord Stream 2 is realized, alternative sources and additional investment are justified

- Review of changes in global market conditions
- Task description and methodology
- Effect of LNG oversupply in the DR
- Infrastructure scenarios and CBA

Shifting global gas market fundamentals

- Falling demand in Asia
 - cheap available coal
 - the rollout of RES
 - China's pipeline diversification
 - the restart of Japan's nuclear reactors
- New supply from Australia and US
- Low oil prices have further pushed down indexed Asian gas prices
- Asia is no longer the premium market for LNG
- Lower Asian demand has led to price convergence between Asia and Europe

Increase in global liquefaction capacity

Increased attractiveness of the EU market

- - LNG flexibility towards regional price changes
 - Majority of volumes are committed to Asia but partly flexible (portfolio traders)
 - First US LNG shipment landed in Europe on April 26, 2016
 - 2015/14 EU LNG import growth: 24%

Gas import structure in Europe

In 2014 utilization of LNG regasification • terminals in Europe was down at 19% (163 bcm capacity remained unused)

- Review of changes in global market conditions
- Task description and methodology
- Effect of LNG oversupply in the DR
- Infrastructure scenarios and CBA

- To assess how the Danube Region benefits from the soft global LNG market under current infrastructure and tariff conditions
- To identify the most important infrastructure bottlenecks
- To explore the benefits of existing/new routes of LNG to the region
 - Newly commissioned PL LNG
 - Existing (expanded) GR LNG + additional infrastructure
 - New HR LNG + additional infrastructure
 - Existing IT LNG (with lower regasification tariffs)
- To calculate social NPV of these infrastructures
- To analyse the effect of Nord Stream 2 on the above listed scenarios

- Gas market modelling (EGMM)
- Establishing the 2016 and 2020 references
- Simulation of increased LNG flow to Europe based on the 2016 and 2020 reference cases measuring the change of modelled gas wholesale prices across Europe and in the Danube Region
- Simulation of new infrastructure scenarios:
 - Effect of new LNG regasification terminals
 - Effect of CESEC/PCI regional projects
 - Sensitivity of the results to the realisation of Nord Stream 2
- Social NPV for all infrastructure projects is quantified

2016 reference

- 2016 Q1 European price landscape
- Flows modelled are in line with the 2015 flow pattern (IEA, ENTSOG, Eurostat)
- 50bcm/year of LNG reaching Europe
- Compared to North-West Europe, prices remain higher in some DR countries
- Reason: LNG terminals are distant and tariffs absorb the price difference between countries

- Review of changes in global market conditions
- Task description and methodology
- Effects of LNG oversupply in the DR
- Infrastructure scenarios and CBA

Price effects of increased LNG flows in 2016

LNG flows			Price ch	ange (%)		
(bcm/year)	~50 bcm	~65 bcm	~80 bcm	~110 bcm	~125 bcm	~140 bcm
AT	0%	-5%	-8%	-12%	-15%	-20%
BA	0%	0%	0%	-1%	-4%	-5%
BG	0%	0%	0%	0%	0%	0%
CZ	0%	-3%	-6%	-8%	-13%	-18%
DE	0%	-4%	-7%	-11%	-15%	-21%
HR	0%	-3%	-6%	-9%	-13%	-15%
HU	0%	-2%	-3%	-5%	-8%	-11%
MD	0%	-1%	-1%	-3%	-5%	-8%
RO	0%	0%	0%	-1%	-1%	-1%
RS	0%	-1%	-2%	-4%	-7%	-9%
SI	0%	-4%	-8%	-12%	-16%	-19%
SK	0%	-2%	-4%	-7%	-11%	-15%
UA	0%	-1%	-2%	-4%	-6%	-9%
DR	0%	-3%	-5%	-8%	-12%	-16%
EU	0%	-3%	-7%	-11%	-16%	-22%

- We modelled the price effects of increased LNG flows in our 2016 reference
- Due to infrastructural constraints (no LNG terminal and high tariffs on interconnectors) in the region, DR countries benefit less than the EU as a whole
 - DR countries may not receive actual LNG "molecules", but spot gas is crowded out in Western Europe by cheaper LNG sources Average EU wholesale gas price might decrease below 12 €/MWh at LNG levels of 140 bcm/year while DR prices are 7% higher Average DR price masks large disparity in individual prices
 - Main beneficiaries of larger flows include DE (through NL), AT (through IT and DE) and SI (through AT and IT)

Assumptions for the 2020 reference scenario

- LNG flows to Europe to reach ~100 bcm/year by 2020
- Demand and production will change as forecasted in the latest TYNDP grey scenario
- LTC assumptions: prices are partly oil indexed (ratio is based on 2015 statistical data) and do not expire
- Oil price: 2016 January World Bank forecast
- Based on the 2015 real transmission, storage, and LNG regasification tariffs we assume 2 €/MWh tariff for newly commissioned infrastructure

 New infrastructure: the FID projects to be commissioned by 2020. Source: ENTSO-G TYNDP without TAP (TAP will be analysed)

New interconnector		Capacity (GWh/day)
Biriatou	FR-ES	60
	ES-FR	55
Alveringem-Maldegem	FR-BE	270
Griespass-Passo Gries	IT-CH	421
Ellund	DE-DK	40.56
Ruse-Giurgiu	BG-RO	14.38
	RO-BG	14.38
LNG	Country	Capacity (GWh/day)
Revythoussa extension	GR	+80.38
Dunkerque	FR	348
Klaipeda extension	LT	+27.1

2020 reference

Price levels, €/MWh

Price levels (€/MWh) and change to 2016 reference

- By 2020 the price difference between DR and Western Europe widens
- Increased LNG flows to Europe lowers prices in Greece, Spain (major LNG importers)
- Lack of infrastructure prevents price convergence in Europe

Price effects of increased LNG flows in 2020

LNG flows	Price change (%)						
(bcm/year)	~80 bcm	~95 bcm	~100 bcm	~120 bcm	~140 bcm	~160 bcm	
AT	+7%	+4%	0%	-3%	-8%	-12%	
BA	+2%	+2%	0%	-1%	-3%	-5%	
BG	0%	0%	0%	0%	0%	-1%	
CZ	+7%	+4%	0%	-3%	-8%	-12%	
DE	+8%	+4%	0%	-4%	-10%	-13%	
HR	+4%	+3%	0%	-2%	-6%	-8%	
HU	+4%	+3%	0%	-1%	-4%	-6%	
MD	+3%	+2%	0%	-1%	-4%	-6%	
RO	+2%	+2%	0%	-1%	-4%	-6%	
RS	+3%	+2%	0%	-1%	-4%	-5%	
SI	+6%	+4%	0%	-3%	-8%	-11%	
SK	+7%	+4%	0%	-3%	-8%	-11%	
UA	+4%	+3%	0%	-2%	-5%	-8%	
DR	+6%	+3%	0%	-3%	-7%	-10%	
EU	+8%	+4%	0%	-5%	-11%	-16%	

We modelled the price effects of increased LNG flows in our 2020 reference

- At the expected level of global LNG supply, increased European prices attract more LNG to Europe
- Price difference between the EU and the Danube Region is bigger in 2020 than in 2016

- Review of changes in global market conditions
- Task description and methodology
- Effect of LNG oversupply in the DR
- Infrastructure scenarios and CBA

16

Country

2

P=19

Methodology of infrastructure assessment PL, IT, GR and HR LNG evacuation routes LNG Evacuation route is deemed possible if the neighbouring market price is higher than the domestic price

- Assumed new infrastructure tariff is 1 €/MWh on both entry and exit points (2 €/MWh in total)
- Pipeline utilisation of new infrastructure and • LNG utilisation checked
- Welfare effects relative to the reference case measure the benefit of the project
- Total CAPEX of infrastructure expansion is • considered the cost of the project
- CAPEX is paid 1 year before • commissioning
- NPV is calculated for all projects with a • positive welfare effect on a 25 year lifetime, assuming 4% discount rate

assessed

•

Country

P=15

Analysed routes and scenarios

LNG terminals PL, LT, GR, IT, HR, are linked to PCI projects in the DR

	Infrastructure element
1	GIPL
1a	GIPL + low PL LNG tariff
2	GIPL+Baltic Cluster
3	Baltic Cluster
4	PL-SK
4a	PL-SK + low PL LNG tariff
5	IGB
5a	IGB+BG-RO
5b	IGB+BG-RO+RO-HU
5c	IGB+IBS
6	TAP +IGB
7	IT LNG + SI-HU
7a	Low IT LNG tariff + SI-HU
8	HR LNG
8a	HR LNG + HR-HU
8b	HR LNG + low HR-HU tariff
8c	Low HR LNG + low HR-HU tariffs

PCIs used to connect LNG to DR

Name of PCI	From	То	Capacity Bcm/y	Capacity GWh/d	Cost MEUR	Length km	Diameter mm	Calc.Cost MEUR	PCI	Date
GIPL	PL LT	LT PL	2.4 1.7	64.2 45.5	- 558	534	700	452.8	TRA-N-212 TRA-N-341	2019
	PL	SK	5.7	152.4	_				TRA-N-190	
PL-SK	SK	PL	4.7	126.0	n.a.	371	1000	586	TRA-N-275 TRA-N-245	2019
	GR	BG	3.0	80.3	220	195	200	156.0	TDA NI 279	2019
IGD	BG	GR	3.0	80.3	220	100	800	150.9	I KA-IN-370	2010
	LT	LV	4.4	117.2	n 0	03	500	60 5	TRA-N-342	2021
Baltic	LV	LT	4.4	117.2	- II.a.	93 300	09.5	TRA-N-382	2021	
Cluster	LV	EE	3.7	97.7	n 2	na	n 0	~100		2010
	EE	LV	3.7	97.7	11.a.	n.a	n.a.	~100	1 NA-IN-004	2019
TAP	GR	AL	13.0	348	1500	871	1200	2091.7	TRA-F-051	2020
RO-HU	RO	HU	4.2	113.7	550	n.a	n.a.	n.a.	TRA-N-126	2023
	RC	Þ٨	05	562	na	185	800	220	TRA-N-431	2023
DG-RU	bG	ΝŪ	0.5	502	11.a.	105	800	220	TRA-N-379	2018
BG-RS	BG	RS	3.0	80	200-250	185	813	215.5	TRA-N-137	2018
SI-HU	SI	HU	1.3	34.8	145	174	500	156.3	TRA-N-112 TRA-N-325	2020
HR-HU	HR	HU	2.8	76	370	308	1000	439.5	TRA-N-075	2019
HR LNG	LNG	HR	4.0	108	300	-	-	-	LNG-N-082	2019

Reported cost was used for NPV calculation where available - otherwise estimated

Regional welfare effects

		Welfare change in DR to reference, M€
1	GIPL	0.88
1a	GIPL low	-13
2	GIPL+Baltic Cluster	0.79
3	Baltic Cluster	-0.1
4	PL-SK	0
4a	PL-SK low	-13
5	IGB	30.9
5a	IGB+BG-RO	29.1
5b	IGB+BG-RO+RO-HU	29.1
5c	IGB+IBS	24
6	TAP +IGB	31.7
7	IT LNG +SIHU	0
7a	low IT LNG tariff +SIHU	-13
8	HR LNG	44.3
8a	HR LNG + HR-HU	44.3
8b	HR LNG+HR-HU low tariff	45.7
8c	Low HR LNG+low HR-HU tariffs	90.9

- Majority of the projects have a positive welfare effect in the DR
- CAPEX costs of the project have to be considered for CBA

Social NPV for the infrastructure scenarios

- Total welfare change from reference measures the benefit of the project
- Costs are indicated on slide 18
- Investment was made in t-1
- Benefits were awarded for a 25 year lifetime
- Projects with positive social NPV in base case:
 - ► IGB
 - IGB with TAP
 - HR LNG (4bcm/year 300 M€, 3€/MWh tariff – HR is the only beneficiary country)

	Social NPV, M€
	Without NS
GIPL	-483
GIPL low	-677
GIPL+Baltic Cluster	-568
Baltic Cluster	-84
PL-SK	-521
PL-SK low	-702
IGB	261
IGB+BG-RO	-262
IGB+BG-RO+RO-HU	-680
IGB+IBS	-46
IGB (with TAP)	236
IT LNG +SIHU	-128
low IT LNG +SIHU	-303
HR LNG	36.4
HR LNG + HR-HU	-293
HR LNG+HR-HU low	-272
Low HR LNG+low HR-HU	380

Nord Stream 2 scenarios

- Scenario assumptions
 - Realisation of Nord Stream 2. doubling current capacity to 110 bcm/year
 - Most long-term Russian contracts ► assumed to be re-routed (RU-AT, RU-BA, RU-CZ, RU-FR, RU-DE, RU-HU, RU-IT, RU-RS, RU-SK, RU-SI)
 - LTCs crossing the Balkans route and Ukraine are kept intact (RU-UA, RU-► RO, RU-BG, RU-MK, RÙ-GR, RU-TR)
 - Delivery point is at the national ► border of each country
 - Price of Russian gas delivered ► remains unchanged for existing contracts
- Nord Stream expansion effects
 - General price increase in Danube Region and CSEE
 - Marginal price drop in Western Europe

Natural gas wholesale price change compared to the 2020 reference (€/MWh)

Social NPV for the infrastructure scenarios

- Projects with positive social NPV with Nord Stream 2:
 - ► IGB
 - BG-RO (reverse flow)
 - ► RO-HU
 - ► IBS
 - IGB with TAP also
 - HR LNG with HR-HU
- Nord Stream 2 causes a general price hike in the region, thus any new infrastructure has stronger welfare effect
- Without Nord Stream 2, total project investment needs are approximately 890 M€
- With Nord Stream 2, project investment needs increase to 1880 M€

	Social NPV, M€		
	Without NS	With NS	
GIPL	-483	-510	
GIPL low	-677	-581	
GIPL+Baltic Cluster	-568	-594	
Baltic Cluster	-84	-81	
PL-SK	-521	-456	
PL-SK low	-702	-514	
IGB	261	1145	
IGB+BG-RO	-262	495	
IGB+BG-RO+RO-HU	-680	77	
IGB+IBS	-46	1296	
IGB (with TAP)	236	1677	
IT LNG +SIHU	-128	-74	
low IT LNG +SIHU	-303	-74	
HR LNG	36.4	857	
HR LNG + HR-HU	-293	528	
HR LNG+HR-HU low	-272	1267	
Low HR LNG+low HR-			
HU	380	1625	

Main conlcusions

- LNG oversupply would bring price relief to Europe, however, the DR will experience limited benefits. The price difference between Europe and the Danube Region will grow as more LNG supplies reach Europe
- The main reason for this outcome: lack of LNG terminals, missing interconnectors, and underutilized existing infrastructure due to high transmission tariffs
- Modelling suggests that for PL LNG, HR-HU interconnector and HR LNG tariffs are the major obstacle for infrastructure utilisation and greater regional social benefits
- Given the low price environment and demand decrease, many proposed PCI projects are not utilised in our modelling scenarios
- By 2020, we find IGB, IGB+TAP and the Croatian LNG alone or even with HR-HU interconnector (at low tariffs) to be projects with a positive social NPV
- The Nord Stream expansion would bring a substantial price increase to the DR. If Nord Stream 2 is realized, alternative sources and additional investment are justified
- Without Nord Stream 2, regional investment costs total 890 M€, with Nord Stream 2 expansion more than double this amount (1880 M€)
- Nord Stream 2 will not necessarily crowd out LNG from Europe, unless other suppliers (e.g. Russia) engage in price competition to retain market share
- TAP-contracted Azeri gas definitely weakens the utilisation of the Greek LNG terminal

Thank you for your attention!

Project lead: Borbála Takácsné Tóth borbala.toth@rekk.hu www.rekk.hu

Prepared by: Ákos Beöthy, Péter Kotek, Adrienn Selei

Modelling results of the analysed infrastructure routes

Total pipeline flows on PL pipelines, TWh GIPL+ Baltic **Baltic** GIPL Cluster Cluster Ref PI -DF 2038 203.8 203.8 203.8 DE-PL 35.6 35.6 37.9 38.1

CZ-PL 0.0 0.0 0.0 0.0 RU-PL 318.0 318.0 318.0 318.0 UA-PL 0.0 0.0 0.0 0.0 PL-UA 8.3 8.3 8.3 8.3 PI -I T 24 26 n.a. n.a. LT-PL 0.0 0.0 n.a. n.a. PL-SK n.a. n.a. n.a. n.a. SK-PL n.a. n.a. n.a. n.a.

LNG terminal flows, TWh							
	GIPL+ E						
		GIFL	BC	Cluster			
PL LNG	14.3	14.3	14.3	14.3			
LT LNG	13.9	11.9	12.1	14.3			

- GIPL does not increase PL LNG utilisation, but harms LT LNG spot utilisation
- If GIPL is commissioned, spot LNG from Western European markets flows from Germany through Poland to Lithuania
- The Baltic Cluster further increases GIPL flows, but alleviates the LT LNG utilisation issue somewhat

1-1a PL LNG tariff reduction with GIPL

Total pipeline flows on PL pipelines, TWh						
	ref	GIPL	GIPL low			
PL-DE	203.8	203.8	203.8			
DE-PL	35.6	37.9	10.9			
CZ-PL	0.0	0.0	0.0			
RU-PL	318.0	318.0	315.5			
UA-PL	0.0	0.0	0.0			
PL-UA	8.3	8.3	9.7			
PL-LT	n.a.	2.4	5.2			
LT-PL	n.a.	0.0	0.0			

LNG terminal flows, TWh						
TWh ref GIPL GIPL low						
PL LNG	14.3	14.3	48.9			
LT LNG	13.9	11.9	9.3			

- LNG regasification fee at the Polish terminal was reduced to 1 € /MWh from 3.86 €/MWh
- LNG utilisation increased at PL terminal and decreased at LT terminal
- Lower flows at PL-DE and RU-PL interconnectors
- Additional LNG consumed in Poland, transported to Baltic and Ukraine
- Increased use of GIPL and UA-PL

3. Baltic Cluster

	Total pipeline flows, TWh					
	GIPL+ Baltic					
	ref	GIPL	BC	Cluster		
LV-LT	0.0	0.0	0.0	0.0		
LT-LV	7.4	7.7	0.0	0.0		
LT-RU	0.0	0.0	0.0	0.0		
RU-LT	17.9	17.9	17.9	17.9		
PL-LT	n.a.	2.4	2.6	n.a.		
LT-PL	n.a.	0.0	0.0	n.a.		
LT-LV2	n.a.	n.a.	8.1	7.8		
LV-LT2	n.a.	n.a.	0.0	0.0		
LV-EE	3.1	3.2	0.0	0.0		
EE-LV	0.0	0.0	0.0	0.0		
RU-EE	4.4	4.4	4.4	4.4		
LV-EE2	n.a.	n.a.	3.6	3.5		
EE-LV2	n.a.	n.a.	0.0	0.0		

- Baltic Cluster increases LNG flows to the Baltic region by 3%
- Additional flows are delivered to Latvia and Estonia

LNG terminal flows, TWh						
	rof	GIPL+	Baltic			
	IEI	GIFL	BC	Cluster		
PL LNG	14.3	14.3	14.3	14.3		
LT LNG	13.9	11.9	12.1	14.3		

4. PL-SK interconnector with tariff reduction in PL

	ref	PL-SK	PL-SK low
PL-DE	203.8	203.8	203.8
DE-PL	35.6	35.6	9.4
CZ-PL	0.0	0.0	0.0
RU-PL	318.0	318.0	314.9
UA-PL	0.0	0.0	0.0
PL-UA	8.3	8.3	9.7
PL-SK	n.a.	0.0	0.0
SK-PL	n.a.	0.0	0.0
SK-CZ	0.0	0.0	0.0
CZ-SK	50.5	50.5	49.6
AT-SK	33.0	33.0	32.5
SK-AT	274.3	274.3	274.3
UA-SK	328.3	328.3	328.3
SK-UA	67.6	67.6	66.0
HU-SK	0.0	0.0	0.0
SK-HU	12.8	12.8	12.8

TWh	ref	PL-SK	PL-SK low
PL LNG	14.3	14.3	46.2
LT LNG	13.9	13.9	13.8

- The new infrastructure has no effect on PL LNG utilisation at high LNG tariff scenario
- Even if PL LNG tariff is reduced to 1 €/MWh, the low price difference between SK and PL markets does not allow for spot trade flows to SK and HU markets
- However, Ukrainian markets allow for increased consumption
- Additional LNG regasified in the PL terminal is consumed in the PL market and transported to Ukraine
- Spot flows through Slovakia to Ukraine are reduced due to this competing new source

5. IGB + other infrastructure elements

	Total ninalina flawa TM/b				
	ref	IGB	IGB+ BG-RO	BG- RO+ RO-HU	IGB+ IBS
BG-MK	1.4	1.6	1.6	1.6	1.5
BG-GR	16.6	16.6	16.6	16.6	16.6
BG-TR	131.9	131.9	131.9	131.9	131.9
RO-BG	173.4	173.4	173.4	173.4	173.4
RO-BG2	3.1	0.1	1.3	1.3	1.3
BG-RO	0.0	2.6	0.4	0.4	2.0
BG-RO2	n.a.	n.a.	5.1	5.1	n.a.
GR-BG	n.a.	10.7	12.3	12.3	27.1
BG-GR2	n.a.	0.0	0.0	0.0	0.0
RO-HU	n.a.	n.a.	n.a.	0.0	n.a.
BG-RS	n.a.	n.a.	n.a.	n.a.	19.9

- Does the realisation of BG-• RO, BG-RO+RO-HU or IBS pipelines affect the flows on the IGB and the GR LNG?
- BG-RO increased the • utilisation of the IGB and the GR LNG terminal, as the BG market consumed the additional flows
- Addition of the RO-HU • interconnector did not improve the situation, the LNG did not reach Hungary
- The IBS had significantly • higher effects on the LNG and the IGB utilisation

6. TAP+IGB

Total pipeline flows, TWh					
	ref	IGB	TAP +IGB		
BG-GR	16.6	16.6	16.6		
TR-GR	0	0.0	0.0		
GR-BG	n.a.	10.7	11.6		
BG-GR2	n.a.	0.0	0.0		
TR-GR2	n.a.	n.a.	88.0		
GR-AL	n.a.	n.a.	78.2		
AL-IT	n.a.	n.a.	78.2		

- LTC to IT, GR and to BG is assumed on TAP
- TAP has a negative effect on GR LNG utilisation

7. IT LNG + SI-HU

	low IT IT LNGLNG			
	ref+SIHU +SIF			
IT-SI	0	0	0	

		lc	w IT
	l l	LNG L	NG
TWh ref	+	SIHU +	SIHU
IT LNG	213.1	213.1	213.1

DANUBE REGIO

strateg

- LNG tariff reduction does not affect terminal utilisation
- IT-SI interconnector has 0 flows in both scenarios

8 HR LNG+HR-HU

				HR	Low
				LNG+	HR
			HR	HR-	LNG+
		HR	LNG +	HU	low
	ref	LNG	HR-HU	low	HR-HU
SI-HR	13.7	0.0	0.0	0.0	0.0
HU-HR	0.0	0.0	0.0	0.0	0.0
HR-HU	n.a.	n.a.	0.0	0.5	18.8

				HR	Low HR
			HR	LNG+	LNG+
		HR	LNG +	HR-HU	low HR-
TWh	ref	LNG	HR-HU	low	HU
PL LNG	14.3	46.2	46.2	46.2	46.2
LT LNG	13.9	13.8	13.8	13.7	13.6
GR LNG	22.4	22.3	22.3	22.3	22.3
IT LNG	213.1	213.1	213.1	213.1	213.1
HR LNG		15.7	15.7	16.2	35.6

- HR terminal is underutilized at high tariff (3.2 €/MWh)
- Adding the HR-HU interconnector does not change the utilisation, the interconnector is not used at high tariffs
- At lower (1-1) HR-HU tariff scenario, 0.5 TWh gas is flowing to Hungary
- At low LNG regasification (1 €/MWh) and pipeline tariffs, 2 bcm LNG may reach Hungary

