

Introduction to the Danube Smart Grid Initiative

Regional Workshop on Smart Grid Deployment in the Danube Region Brussels, 18th November 2013

Péter Kaderják Director Regional Centre for Energy Policy Research

Overview of the presentation

- Aim of the Danube Region Smart Grid project
- Current state-of-affairs in the DR regarding smart grid and metering deployment
- Potential drivers of smart grid and metering deployment
- The role of the regulator

Aims of the Danube Region Smart Grid project

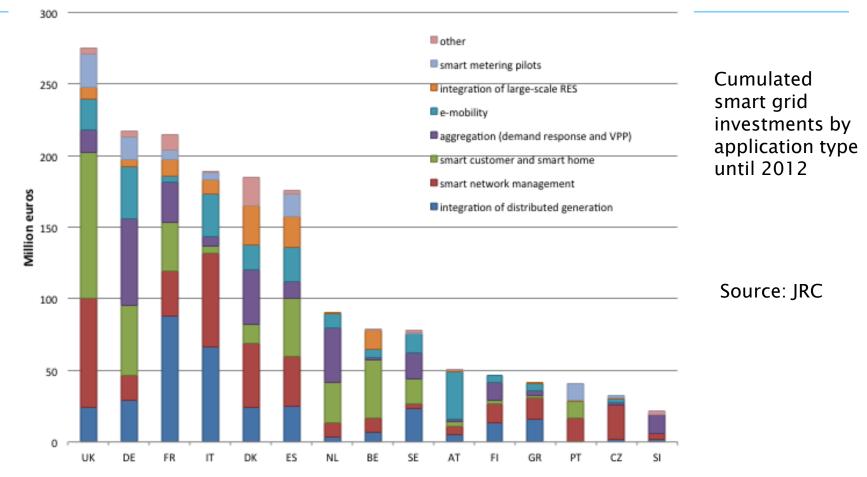
- Assess the current state-of-affairs regarding the deployment of smart grids and smart meters
- Identify potential drivers of future deployment
- Initiate discussion among the policy makers, regulators, research organisations, DSOs and TSOs of the respective countries
- Identify common problems and best practices
- Identify innovative regulatory practices to incentivise DSOs to invest in smart grid solutions
- Identify issues of future cooperation

Method

- State-of-affairs regarding the deployment of smart grids and smart meters in Hungary: national roundtable (Budapest, February 2013)
- Questionnaire survey (so far 9 countries covered from the 14)
- Brussels stakeholder workshop (Nov. 2013)
- Scoping report to be published by the end of 2013

Policy goals, smart grid solutions, PIs

General policy goal	Means	Solutions offered by smart networks	Performance indicators
Competitive retail	retail competition	smart meters	• supplier switching rate
electricity markets	innovative end customer tariffs	smart meters	 existence of ToU tariffs and power quality differentiated tariffs
Sustainability	energy efficiency	smart meters	 current level of energy intensity
	electric vehicles (EV)	recharging infrastructure	 share of EVs number of public recharging stations
	DG/RES-E	active distribution network, storage	 future RES-E production future intermittent RES-E capacity
Security	generation adequacy	demand response smart electrical appliances	 peak shaving potential electricity demand forecast
		DG-load profile harmonisation	 RC-ARM network loss
		storage	
	secure grid operation	automatic fault detection	SAIDI, SAIFIvoltage quality
		voltage control	
Additional	pre-payment option	smart meters	network loss
services	theft detection		commercial loss
	remote metering		 pay-as-you service
	remote (dis)connection		
			Energy



5

Current state-of-affairs in the DR regarding smart grid and metering deployment

SG investment in Europe

SG investment is concentrated in a few countries many of them with large RES-E capacities.

SG investment in the DR countries, mEUR

	integration of distributed generation	smart network management	smart customer and smart home	aggregation (demand response and VPP)	e-mobility	integration of large- scale RES	smart metering pilots	other	ms	Cumulate smart gri investme by applicatie type unti 2012
DE	29	17	48	60	36	5	15	3	216	
AT	5	6	2	1	33	0	0	1	51	
CZ	1	23	0	1	2	1	1	0	32	
SI	1	4	0	13	0	0	0	3	21	
HU	0	4	0	0	4	0	0	0	10	
SK	0	0	0	0	0	0	0	5	5	
RO	0	0	0	1	0	0	0	0	1	
Total	36	54	50	76	75	6	16	12	336	

ted rid ents ion til

Source: JRC

Smart grid roadmaps in Europe: government and industry-led initiatives

Country	Year	Responsible	Stakeholders involved
Austria	2010	National Technology Platform Smart Grids Austria	DSOs, energy suppliers and other members from the industry.
Germany	2012	German Association of Energy and Water Industries (BDEW);German Electric and Electronic Manufacturers' Association (ZVEI)	BDEW and ZVEI member companies
Slovenia	2012	consortium	DSOs, The University of Ljubljana and Electroinstitute Milna Vidmar: it has no official status.
Ireland	2011	Sustainable Energy Authority of Ireland	The Sustainable Energy Authority of Ireland; electricity regulator; electricity transmission system operator; electricity distribution system operator; Department of Energy, Communications and Natural Resources; Science Foundation of Ireland; Smart Grid Ireland (consumers)
Denmark	2010	Energynet.dk and Danish Energy Association	member companies of the Danish Energy Association
France	2009	French Environment and Energy Management Agency	TSO (RTE), the main DSO (ERDF, 95% of distribution networks), the association of distribution network owners (FNCCR), several French energy companies, experts from universities and ministries
UK	2009	Electricity Networks Strategy Group	a high-level forum which brings together key stakeholders in electricity networks and has been tasked by DECC and Ofgem to produce a high level smart grid vision and routemap

Current state of affairs - smart grid policy in the DR

How would you characterise the current development phase regarding smart grid investments in your country?

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
Leading role							1		
Advanced role									
Average role									
At the beginning		1	1	1	1				~
Not started yet	1					1		1	

In which field – do you expect – the biggest SG investment need?

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
distribution network (excluding SMs)		1				1	1		
SMs	1		1	1	1			1	1
transmission network									

Smart meters: current levels and rollout plans in the DR

What is the level of smart meter rollout as a % of all meters?

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
0-10%	~	~		1	1	1	1	1	
10-50%			1						1
50-90%									
90-100%									

	CZ	RO	SI	CR	BA	MD	AT	HU	UA	SR	ME	Source:	
SM rollout plan		~			✓		~						
full rollout		2022										survey	
interim target		80%/2020			70%/2020		95%/2019						
CBA prepared	1	1	1				~	~		×		Landscape report	
CBA result	-	+	+				+	+				Lunuscupe report	

Note: green = not applicable

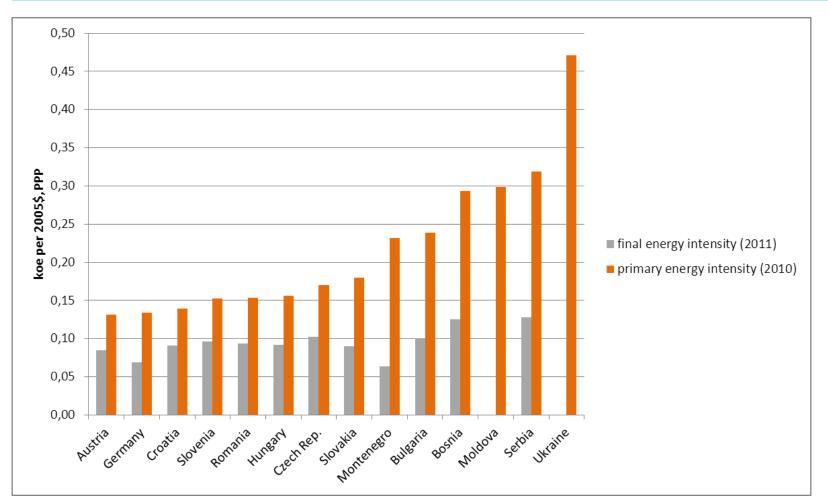
Drivers of smart grid and metering deployment in the DR

Drivers of smart grid deployment

What are the key benefits/services you associate with smart grid development in your country?

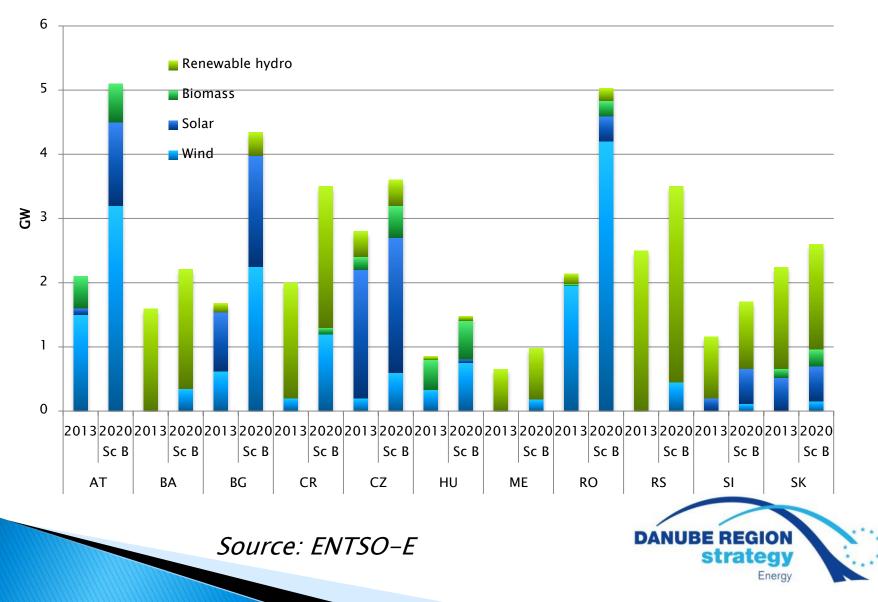
beneficiary		CZ	RO	SI	CR	BA	MD	AT	HU	ME
	Active customers	√		1				1	1	1
consumer	Integration of all network users	√					1	1		
	Enables markets	√		✓				1		
	Power quality based market segmentation									
DSO	Optimizes asset management	√	✓	✓	✓	1		1		✓
030	Self healing network	√	✓		✓	1			1	
	Commercial loss reduction		1			1			1	

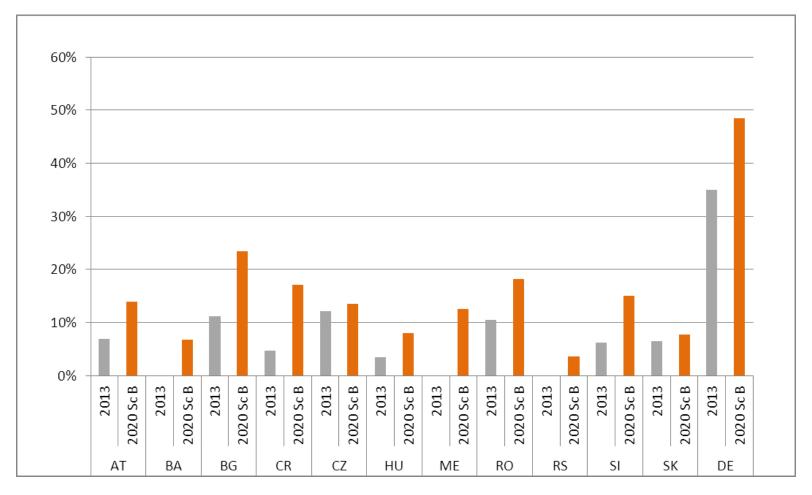
- Benefits are country-specific
- DSO related issues seem to be equally important as the 20-20-20 target related ones



Electricity demand forecast

	2012/2020	rate of annual increase	source
AT	15%	1,9%	NREAP
BG	12%	1,5%	NREAP
CZ	17%	2,1%	NREAP
DE	1%	0,1%	NREAP
HU	15%	1,9%	NREAP
RO	27%	3,4%	NREAP
SR	15%	1,9%	NREAP
SI	9%	1,1%	NREAP
BA	34%	4,2%	Energy Community
CR	20%	2,5%	Energy Community
MD	39%	4,9%	Energy Community
ME	20%	2,6%	Energy Community
RS	6%	0,7%	NREAP, 2013
UA	38%	4,7%	Ministry of Energy and Coal Industry


Energy efficiency potential: mainly in the SEE countries


Source: Enerdata, ElA

RES-E capacity forecast (without large hydro)

The share of intermittent RES-E capacity in net generational capacity

Source: ENTSO-E

RES-E curtailment and capacity limitations

RES-E curtailment is not common. On the other hand, most countries have set limits for new wind capacities. This limitation of capacities reduces the need for intermittent RES-E curtailment.

Does your country employs network capacity quota of any sort for intermittent RES-E generation?

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
capacity quota		~		~	~			~	
MW (wind)		2500-3000		400	350			740	

Note: green = not data

Electric vehicles

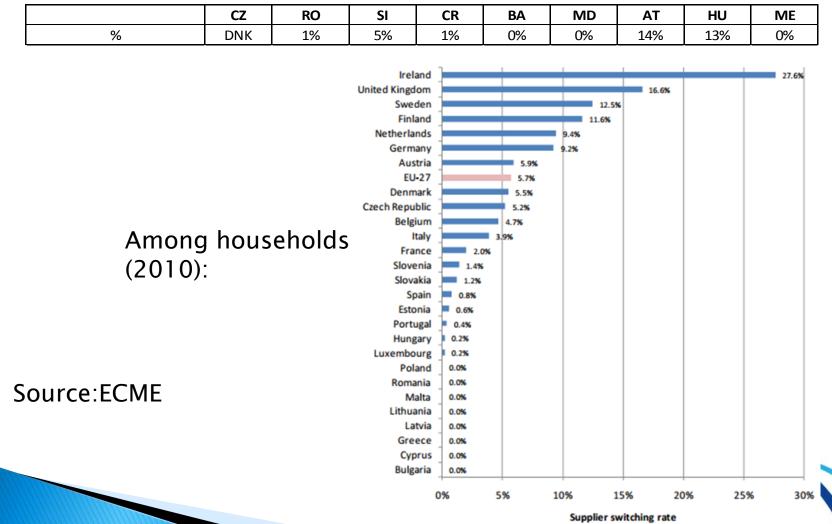
The share of EVs and plug-in hybrid electric vehicles (PHEVs) in the total light-duty vehicles (personal cars) is still negligible in the DR countries.

The charging infrastructure is sparse.

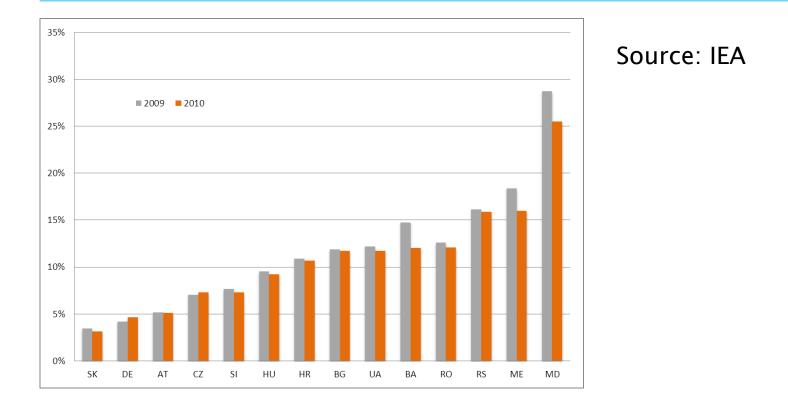
How many public charging points are in operation?

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
No of public charging points		-	50	4	-	-	3295	10	-

Quality of supply: SAIDI values for unplanned interruptions

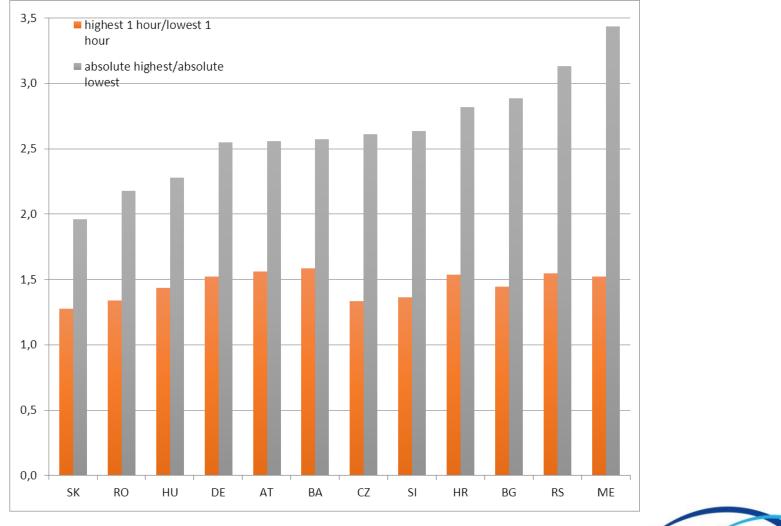

Note: SAIDI/SAIFI not measured yet in Montenegro

Source: CEER and national sources



Retail competition: supplier switch

In the total consumer segment (2011 or 2012):


Network loss and commercial loss

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
Is it a problem?					~	~		~	~
% ot total distributed amount		7	2		7-14	11		5-8	13

Potential for peak shaving

Source: ENTSO-E

Regulatory issues

Regulatory barriers

What - do you think - are the barriers of smart grid deployment?

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
High costs for SG infrastructure –									
questionable ROI				1	1			1	1
Inadequate incentives	1	✓	1		1		✓	1	
IT security		✓		1					
Lack of regulatory polices	1	✓	1			1			
Lack of public education and									
awareness	1						1		1
Fear of change									
(Utilities/Customers)	1	1					1		
Increase of workers lay off									
Immature technology									
Lack of technology standards	1								

Role of the regulator

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
provide incentives for network operators to		1				1			
invest in innovative SG technologies		<				✓			*
changing balancing market rules for the									
better integration of intermittent RES-E		1		1					
production									
initiate stakeholder discussion to ignite			1		1			1	
national policy development		<							
provide regulator push for smart meter roll-		1							
out		~							

Potential drives behind smart grid deployment

	CZ	RO	SI	CR	BA	MD	AT	HU	ME
RES-E		1	1	1	1		1	✓	1
Electric vehicles									
Energy efficiency					1	1			1
Peak shaving				1					1
Network loss		1			1	1			1
Supply quality		1			1	1			1
Commercial loss					1	1		1	1
Retail competition	1	1	1	1			1	1	

Scope for future Danube Region assistance:

- Develop a SG regulatory guideline for the DR
- Promote regulatory cooperation in this field
- Promote the development of country level SG roadmaps
- Assist voluntary, sub-group level pilot initiatives

Thank you for your attention!

www.rekk.eu

Main issues for discussion

How ambitious is your country regarding smart grid development?

- Is it on the policy agenda?
- Is it discussed with stakeholders?
- > What are the drivers behind the ambitions?
 - Renewable integration?
 - Commercial loss?
 - Voltage problems?
 - ° ...
- What benefits are expected from such development? Are these alternative solutions? What are they?
- What are the barriers of smart grid development?
- Are there incentives in place?
- What is the role of regulators in this respect?
- What kind of cooperation among the DR region countries could move forward smart grid deployment in your country?

